
\‘ 

GEOPt 

UNIVERSITY 
OF ALASKA 

COLLEGE, 
ALASKA 

UAO R-171 

Y 

EFFECTIVE RECOMBINATION COEFFICIENT IN,j’D-REGION 
I 

bY . -  
GPO PRICE $ R Parthasamthy and D. B. R a i F  

CFSTl PRICE(S) $ 
September 1965 

SCIENTIFIC REPORT N 
Grant NAS5-3595 

- .  
i -  
4 2 . .  . 7 .  c :: of the 

Hard copy (HC) #G 
Microfiche (MF) A53 

ff 653 July 65 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D. C. 



GEOPHYSICAL INSTITUTE 

of the 

UNIVERSITY OF ALASKA 

Scient i f ic  R e p o r t  No. 1 

&CTIVE RECOMBINATION COEFFICIENT IN D-REGION -3 

R. Parthasamthy and D. B. Rai 

NASA G r a n t  No. NAS-5-3595 

Principal Investigator: 

R . Parthasarathy 

-_- 

Approved by : 

Keith B. Ma+her 
Director 

/\le /I I '& ( Lc \ 



~ 

EFFECTIVE RECOMBINATION COEFFICIElJT 

I N  D-REGION 

R. Parthasarathy and D. B. Rai 

& 

Geophysical Ins t i tu te  
University of Alaska 

College, Alaska 

The effect of the meteoric dust par t ic les  on the steady state dis t r ibut ion 

of electrons and ions i n  the lower ionosphere (SO - 90 Ian) has been investi- 

gated. It is shcwn tha t  the effective recombination coefficient obtained is 

highep than that obtained by ignoring the presence of 

the effective recombination coefficient thus obtained 

dust. The expression far 

is  of the form 

t where De, D and D- are the dust capture coefficients f o r  electrons posit ive 
t t ions m d  negative ions respectively; rl and y are the ratios D,/D znd D-/D 

respectively. In the l i m i t  of 

zero CiLst concentration th i s  expression reduces t o  the one derived by igno;.Fi?(: 

The other symbols have the usual meanings. 

dust, i.e. 

ci = (1 + eff 

The coefficients 

theory of charging of 

t 
De, D and D' are derived by an extension of Natanson's 

aerosols by capture of ions. The height dependence of 

these coefficients comes mainly through the height distribEtion of the dus t  

par t ic les ,  for which Divari's resul ts  frcm twilight studies are ut i l ized.  It 



. 
is  found tha t  only particles with radius of the order of tenth of a micron or 

larger contribute significantly.  

region 50 - 90 Jan have thus been computed and are i n  agreement with those 

deduced empirically by us from the multiple frequency (5 - 50 Mc/s) radio- 

wave absorption data i n  the auroral zone. 

comparing the electron density profile derived from the multiple frequency 

The recombination coefficients for the 

The empirical method consisted of 

radiowave absorption with the ionization rate prof i le  calculated 

lite-measured par t ic le  flux. 
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1. Introduction 

Curing the past  f e w  years, there has been a considerable amount of work 

dealing with the many physical processes tha t  determine the steady state 

distribution of electrons and positive and negative ions i n  the lower regions 

of the ionosphere. 

it has been possible t o  obtain some reasonable estimates of the rates of these 

processes, from which one can assemble an "effective recombination coefficient". 

Even though the processes involved a r e r a t h e r  complex 

Taking in to  consideration the most important known processes i n  the region, 

Webber (1962 1 has deduced the 'lef fective recombination coefficient" for differ-  

ent alt i tudes.  

f m  example, by Bailey (1959) and Mitra (19591, or those more recently inferred 

from ionospheric observations by other workers (Belrose e t  al, 1964; Whitten 

et  al, 1965; McDiamid e t  al, 1964; Adams and Masley, 1965). 

deduced by us from the multiple frequency radiowave absorption data are also 

higher, and it is highly improbable tha t  these high values could be attr ibuted 

i n  al l  the cases to  the  uncertainties i n  determinine the effective recombin- 

a t ion coefficient. 

They are substantially lower than the values inferred earlier, 

The coefficients 

This leads one t o  the view tha t  scme additional factor  

other  than molecular processes, must be operative and be affecting the steady 

state distribution of the electrons and ions in the lower ionosphere. 

A possible factor of t h i s  type might be the presence of dust par t ic les .  

It is  generally known tha t  the dust par t ic les  present i n  an ionized gas 

considerably affects the electron-ion ratio ( D i m i c k  and Soo, 1964; Rosen, 

19621, and one would thus expect the dust par t ic les  present i n  the D-region 

to  play scme ro le  i n  the steady state distribution of the  electrons and ions. 

The object of the present paper is two-fold: In  section 2 of t h i s  paper, the  

effect ive recombination coefficient for  different a l t i tudes i n  the D-region 

is derived from the  multiple frqrrency I*adiowave absoiptjon data. In  section 3 ,  

1 



an expression for the  effect ive recombination coefficient is obtained, taking 

in to  account the presence of dust particles.  

t o  the usual form when the dust par t ic le  concentration is negligible. 

of capture of electrons and ions is derived by an extension of Natanson's 

theory of charging of s m a l l  dust  par t ic les  (Natanson 19601, by taking plausible 

values f o r  t h e i r  size arid height distribution. 

The expression is sham t o  reduce 

The rate 

2 . Direct Determination of the "Effective Recombination Coefficient" 

2 . 1  The multiple frequency cosmic noise absorption data at College during the 

polar cap event (PCE) i n  July 1961 were used t o  derive the Ne(h) prof i les  

(Fig. 2) in the region between 40-90 km. 

derivation technique, reference may be made to  ParthaSarathy e t  a1 (1963); 

S e r a f b v  and Nestorov (1963); k r f a l d  et a1 (1964); Parthasarathy and Berkey 

(1965 1. 

takes into account the seasonal variation of atmospheric density was used in 

conjunction with the Sen-Wyller magneto-ionic equation, 

For a f u l l  discussion of the profile- 

Following the last paper, an electron col l is ion frequency model which 

Since the early attempts (Parthasarathy et al ,  1963) at prof i le  derivation 

by means of the multiple-frequency absorption data, several improvements have 

been made i n  the exact de ta i l s  of derivation. 

correcting f o r  the f i n i t e  beam width of the antenna to  obtain the "line 

integral" of absorption, due cognizance should be made of the fact tha t  the 

angle of propagation with respect t o  the magnetic f i e l d  of the arriving ray 

is a function of azimuth and zenith angles. It w a s ,  however, found tha t  the 

reduced "line integral" of absorption is not sensit ive t o  the de ta i l s  of the 

electron density prof i le  i n  the absorbing region. Even i n  the case of the ' 

5 Mc/s (ordinary, or extrwrdinary mode) where the specif ic  absorption 

coefficient significantly varies with the pxopagation angle, no more than two 

It has been found that i n  

2 



percent differences arose in the reduced "line integral" of absorption when 

every possible so r t  of profiles (including th in  stratums of electron density) 

were assumed in the 50 t o  100 Ian region. 

reduced absorption could be f i t t e d  in the 5 to  50 Mc/s range by a power law 

relation, i n  which the exponent could be specified within an e m  of + 0.1. 

The derived exponent is not sensibly dependent upon the requirement of strict 

uniformity of ionization within the antenna beamwidth (of + 35 degrees to  

half-power response) at any alt i tude.  For example, a non-uniformity by a 

f ac to r  of two, makes a difference of only 0 . 1 t o  the exponent, and hence only 

minor difference to  the shape of the  derived electron density profile.  

deriving the electron density prof i le  , best-f i t t i n g  the obsemed l i n e  integral  

of abosrption in the eight observing frequencies of 5-, 5+, lo-, lo+, 20-, 2O+, 

30 and 50 Mc/s, (where - and + sign refer t o  the extraordinary and ordinary 

modes respectively) considerably stabler profiles could be derived, and the 

difference ( 

absorption at  any frequency fn,  could be made less if  the coefficients of the 

prof i le  polynomial w e r e  sought by the cr i ter ion tha t  Cfn(AA), be a minimum. 

The weighting factor  fn was chosen because the experimental error i n  the  

absorption datum varied inversely as the square poot of the frequency, being 

2, < 0 . 1  db at SO Mc/s. 

independently investigated the above aspects t o  the profile-derivation and h i s  

conclusions are similar, 

Further, i n  most instances the 

- 

- 

In  

between the prof ile-derived absorption and the obsewed 

2 

G. M. Lerfald of the CRPL (private communication) has 

2.2 

instances of the  PCE of the 20th July,  1961. 

density profiles shown i n  Figure 2 were derived so as t o  be compatible not only 

with the  data on the four frequencies (lo-, lo+, 30 and 50 Mc/s) in operation 

Figure 1 s h o w s  the reduced absorpticm versus the frequency during three 

The correspnding electron 
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at that time, but also of the  data a t  5-, 5+, 20- and 20' IWs as read in the 

best-fittiiig l ines  i n  Figure 1. The differences, at any of these eight 

freqixncies, betwen the  absorption data i n  Figure 1 and the absorptions 

cmpited from the profiles i n  Figure 2 ,  were less than two pepcent. 

a l ternate  prof i les  was also dwived w i t h  a sharp cut-off at  a leve l  as high as 

40 km, equally sat isfactmy at these eight 5xquercies ,  and coinciding 

(within 20 percert)  with the s e t  in Figure 2 i n  t h e  55 to 75 kilometer region; 

however, the  two sets differed almost by a factoy of two i n  the  50 km level ,  

and by a factor of about 1.5 i n  the 90 km level ,  

discarded only because the absorption c m p t e d  fmm it at 100 Mc/s differed 

drast ical ly  f r o m  the extrapolti-ted values i n  Figure 1. 

the cut-off level  was lowered t o  20 Ian, the resul t ing set of prof i les  coincided 

with the set i n  Figure 2 within a tolerance of 10 percent in  the  55 to  90 km 

region, but differ ing by 25 percent at  the 50 Ian level. Based only on these 

considerations, it can therefore be surmised that the profi les  in Figure 2 are 

val id  With an uncertainty of 50 percent at the 85 lan level ,  of 25 percent i n  

the 70 and 60 km levels,  and of 50 percent at the 50 km level. 

A set of 

The al ternate  set was 

On the other  hand, when 

2.3 The instances shown i n  Figure 1 were chosen during the PCE because, (a) 

instantaneous proton flux data were available at  these instances (Pieper et  

a1 1962) from the Injun I; (b) the absorption levels  could be accurately 

scaled, reduced and f i t t e d  by a power l a w ;  and (c) the  Injun I data  showed tha t  

the cut-off energy for the  gemagnetic la t i tude  of College (64.8O) were as low 

as about 1.5 Mev at  these times. 

Pieper et a1 (1962) have expressed the  par t ic le  f lux  obtained f r o m  the 

counters responding to  E > 1.5  MeV and E > 40 MeV by means of a power l a w  

N(>E) c1 E- (x-l). These instances i n  Figure 1 w e i e  characterized by a relat ively 

4 



hard spectrum, with x of about 2.5. 

us h i s  m d e l  tabulation of ionization rates for the al t i tudes i n  the  40 t o  90 

h region, 

Dr. G. C. Reid of the CRPL has supplied 

From Figure 3 which was drawn from h i s  tabulation it can be seen 

tha t ,  given a f lux above 1.5 MeV, characterized by a spectrum with (x-1) = 1.5, 

the  ionization rate in the al t i tudes below t h e  75 Ion level  does not change when 

the protons of energy less than 5 MeV were prevented from entering the  la t i tude 

of College; progressively serious changes happen in the ionization rate at the 

higher a l t i tudes,  

e t  al, 1962) tha t  during 1921and 2258 UT, the College cut-off was as low as 

1.5 MeV, an uncertainty exists regarding the cut-off during 1541 UT, when the 

cut-off could have been somewhat higher than 1.5 MeV. 

While it can be readily seen f r o m  Injun I data (Pieper 

Using the  proton f lux 

data, the ionization rates at these instances are calculated and are shown 

i n  Figure 2. 

overestimated by a factor of two because of the uncertcbty in the  cut-off. 

The portion of the  curve at 1541 UT, above 75 km m y  have been 

The overal l  errors in the  rates elsewhere may amount t o  about 20 percent 

(Reid, private comunication) . 
F m m  Figure 2 the effect ive recombination coefficient, defined by 

2 
q = a eff e 

in Figure 4 f o r  the several alt i tudes.  

N was calculated and the mean value of the three instances is shown 

2.4 We s h a l l  now outline the limitations t o  the derived aeff i n  Figure 4. 

The uncertainty i n  the coefficient arises frcm the primary par t ic le  data used 

i n  the  calculation of t he  ion-pair production rates, and f r o m  t he  derived 

Ne(h) profiles. 

An examinaticn of the several factors t h a t  m y  contribute t o  the uncer- 

t a i n t y  i n  the proton f lux and spectrum reveals tha t  the f lux and the exponent 

defining the power4aw spectrum may be accurate only within + 25 and + 10 per- 

cent respectively. Sased on several balloon-observed data for particles above 

- - 
- 
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100 MeV, Freier and Vebber (1963) have presented a case for an exponential 

r ig id i ty  spectrum. 

of the powefilaw near zero energies, and is able to  account appmximately f o r  

This spectrum avoids the obvious m t h e m t i c a l  d i f f icu l ty  

the par t ic les  of a f e w  tens of M e V  which only the satellites and rockets can 

measure. It is a l so  well-known that i n  any limited range of energies (say, 

less than two orders of ma,gnitude) data uncertainties do not enable a choice 

between a poweplaw and an exponential-law f i t .  

that  an exponential spectrum, best f i t t h g  the balloon-observed particles 

(E & 100 MeV) could account, with the necessary accuracy, for the  par t ic les  

i n  the range of 1.5 t o  60 MeV w h i c h  almost wholly control the ionization rate 

i n  the  a l t i tudes  between 40 and 90 kms. 

and Webber (19631, the exponential spectrum f i t t i n g  the  balloon-observed, 

higher energy data gives a f lux  above 1.5 MeV as 66 par t ic les  (an-*sec‘lster-’) 

at 0200 UT on the 21st of July 1961, i n  contrast with the flux, measured by 

the satellite, of about 300 (Fig. 11 of Pieper et a l l .  

We do not, hcwever, consider 

For example, from Table 2 of Freier 

The use of such an 

exponential spectrum would therefore underestimate the aeff by a factor of 

about 5 at the higher a l t i tudes.  To summarize: 

satellite borne instruments (published and unpublished) available t o  date 

indicate tha t  i n  the limited energy region of a f e w  MeV t o  60 Mev a pcwer l a w  

fit is as acceptable as an exponential l a w  f i t ;  

a l a w  t o  higher energies (> 60 MeV) w i l l  s ignificantly overestimate the f lux 

(a) the  data fromthe several 

(b) the  extrapolation of such 

of higher energy particles; however, such o v e r - e s t d t e s  lead t o  cnly a f e w  

percent error i n  the  ion production rates i n  the 50-90 km region; 

other  hand, an exponential spectrum f i t t i n g  the higher energy particles and 

extrapolated t o  the lower energy payticles, w i l l  lead t o  unacceptable errors 

i n  the ion production rates. 

(c) on the  

6 
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In  principle, the  greater source of emor  t o  Figure 4 arises from t he  

limitations to the derived N,(h) profiles. 

several multiple-frequency publications referred t o  in section 2.1. In t r ins ic  

t o  the prof i les  derived from the absorption data from a f i n i t e  number of radio 

frequencies is the  progressively large uncertainty at the a l t i tudes  which had 

not contributed a significant share t o  the  total absorption in any of the  

frequencies used. 

These have been discussed in the 

For a detailed discussion of t h i s  point, see section 2.2. 

As pointed out by Webber and Freier (19631, the  presence of Alpha- 

par t ic les  i n  the satellite-measured flux may give rise to a higher ion-pair 

production rates at the altitudes above about 50 km. 

content is known to d i f f e r  widely fm event t o  event, but is unlikely t o  be 

greater than about 10 percent. The content is unknown at the  times shown i n  

Figure 1, and the ionization rate was calculated by assuming a l l  the par t ic les  

as protons. 

the result ing q and, hence, the aeff would be somewhat hiaer than those 

plotted i n  Figure 4. 

on Alpha-particles (than are currently available) would be needed before 

taking serious cognizance ofthem in  the D-region studies. 

e s t h t i o n  of aeff may be in the  uncertainty of the actual f lux  t h a t  should 

have been used in the calculation of q. The flux measured by Injun I a t  

= 1000 km was assumed t o  have arrived isotropically towards the station. 

the absence of any reliable information regarding the  pi tch angle function, 

the possibi l i ty  of a small fraction of them mirmring from al t i tudes between 

t he  100 and the  1000 km levels  was excluded. 

therefore have been s l ight ly  overestimated a this account. 

The Alpha-particle 

If a few percent o f t h e  f lux  were assumed t o  be Alpha-particles, 

More reliable and greater volume of observational data 

A source of over- - 

I n  

The result ing aeff (Fig. 4) could 

7 



Including a l l  the possible sources of error, it would seem tha t  the 

derived aeff in the reEion between 50 and 80 km may be accurate t o  well within 

+ 50 percent. - 

3. Steady State Distribution of Electrons and Ions 

3.1 The several physical processes leading t o  the equilibrium distribution 

of charge density are be l ievedto  be t he  attachment of electrons t o  neutral  

par t ic les ,  recambination of positive and negative ions , electron-positive ion 

recombination, col l is ional  detachment and photodetachment of negative ions. To 

these we add the a t t a h e n t  of electrans and positive ions t o  the dust par t i -  

cles. The effect of the collisional d e t a c h n t  is ncw believed to be 

small compared with the other processes and we neglect the col l is ional  

detachment. 

write the  d i f fe ren t ia l  equations as follows: 

For the rate of change of the charged particle densit ies we can 

dN+ - - q - a i N  + N - - a d N  t N e - D  + +  N 

t +  D N = De Ne + D- N- (3) 

+ 
where Ne, N and N- are the  electron, positive ion and negative ion number 

densi t ies ,  q is the ionization rate ,  ai is the ion-ion recombination coeffi- 

c ien t ,  ad is  the dissociative recombination coefficient,  A is the electron 

attachment coefficient to  t h e  neutral molecules and P is the photo detachment 

coeff ic ient .  De, Dt and D- are the  rate coefficients of attachment t o  the 

dust par t ic les  for electrons, positive ions and negative ions respectively. 

For the steady state, the  number of positive ions captured per second by the  

8 



dust par t ic les  must be equal to the number of electrons and negative ions 

captured, The equation ( 3 )  is simply a statement of this fact.  

For the  equilibrium conditions we have, 

(Note, the collisional d e t a c h n t  tern could be absorbed by P, day or  night.) 

Hence from equations (1) , (2 1 and ( 3 )  we get 

De where q = -  
D+ 

Usinc tine expressTon q = a N 2 we have eff e 

3.2 

taking the dust particles into ccmsj.deratj-cn, 

coefficierlts D 

It is  pertinent t o  compare t h i s  expression with the one o3taine.d without 

A s  shown i n  section 4,4, the 

Dt and D- each tend t o  zero, while for X $, 250 the r a t i o  rl 
e' 
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tends t o  ( l + X )  and y h  is relat ively negligible, as the dust population goes 

t o  zero. Therefore, i n  the l i m i t  of zero dust concentration, we get 

which is the  usual expression f o r  aeff derived by ignorinE the dust par t ic les .  

4. Cetermination of the Rate Coefficients De, D+ and D- 

4.1  The presence of dust particles in  an ionized gas modifies the electron 

and ion concentration owing t o  the  capture of these by the  dust par t ic les .  

The part ic les  in the lower ionosphere are mostly of meteoric origin and have 

a very high d ie lec t r ic  constant, A t  the  a l t i tudes  under consideration them- 

ionic  emission from these particles is negligible and, i n  the steady state, 

the dust w i l l  be neqatively charged (Shklovskii , 1958). Solar illumination 

is a l s o  believed t o  be ineffective in detaching the charges frun the dust. 

The problem then is  t o  determine the rate of capture of electrons and ions by 

these negatively charged dust particles.  

4.2 

out in de ta i l  by Natanson (1960). 

ions we  adapt his treatment to  cover the conditions i n  the lower ionosphere. 

The mass of the dust particle is much la r~er  than the  ion mass so that the 

dust par t ic le  can be taken t o  be stationary during the  encounter with the  

ions of thermal velocity. Also, the ions are assumed t o  be singly chaqed, 

For a positive ion, the force of interaction with the  dust consists of the 

Coulomb force and the  imaEe force, both of which can be derived from the  

potent ia l  given by 

The theory of c h q i n p ,  of aerosols by capture of ions has been worked 

For determining the capture rate of the 

Z€ 2 E2 a3 $(r) = - - - I?) 
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where 2 is the number of elementary changes on the dust particle; E is elemen- 

ta ry  charge Cesul; a is radius of the dust. 

In the  above expression we have assumed the dust t o  be perfectly con- ' 

ducting. 

multiplied by a fac tor  (K + 1 ) / ( ~  + 2). 

t h e i r  high die lec t r ic  constant makes t h i s  factor  very nearly unity. 

the presence of the a t t rac t ive  potential, the  cross section of the dust 

pdr t i .de  for positive ion capture is larger  than i ts  geometrical cross section. 

Natanson's expression f o r t h e  rate of capture of posit ive ions by the  

For a substance of die lec t r ic  constant K the image potent ia l  term is 

For dust particles of meteoric origin,  

Due to  

negatively charged dust reduces t o  simple forms 51 the two extreme cases 

defined by 

kTli 
where li = ion mean free path. 

by t h e  dust, 

Thus, when - >> 1, the rate of capture 
ZE2 

+ + 16 li Za 2 2  
n = 3napCi N C1 + -n a ( - 

kTli 
(8) 

+ 2 where p - - ZE , Ci = man thermal velocity of the ions, and N is t h e i r  

number density. For the conditions i n  the lower ionosphere, -this expression 

reduces t o  

2 

kT 
+ + + E  n 2 3napCiN nCiN - a Z  

If N(a)da is the  number density of the  dust particles i n  the radius range 

da, the t o t a l  rate of capture of posit ive ions per unit volume is simply 

n N(a)da. Thus, w e  have 

11 



2 -  
= mCiNt N(a).a.Z.da. 

and, 

4 . 3  Capture of electrons and negative ions 

In  the case of electrons and negative ions the coulomb potential  is 

repulsive while the image potential  is a t t rac t ive  and the t o t a l  potential  

is  given by 

E 2  a* 

2 r 2 ( r 2  - a*) 

2 
ZE 
r $(r) = + - - (10) 

It is no longer possible t o  neglect the image force which now plays an 

important role.  

or negative ion is  completely determined by the Coulmb force. 

approaches the  par t ic le ,  the image force increases and a t  a distance ro f r o m  

the center of the dust par t ic le ,  the force becomes a t t rac t ive  and increases 

rapidly as the distance frm the dust surface decreases. 

schematically shown i n  Fie;ure 5. 

sphere ro w i l l  thus be captured by the dust particle. 

At large distance frwn the par t ic le ,  the  force on the electron 

A s  the electron 

Thus the s i tuat ion is 

All electrons which are incident on the 

Since the mean free path of the electrons is very large compared t o  the 

distances involved, the number of electrons reaching the sphere ro is 

approximately given by (Natanson 1960) 

-4 bo 1 

KT 
1 2 ne = n r  C N exp c o e e  (11) 

1 2  



where Ce is the mean thermal velocity of the electrons and Ne is  t h e i r  number 

density. 

Qualitatively one can view t h i s  problem as the  passage of electrons 

through a potential  barr ier .  The resultant potential  f o r  r > r1 (Figure 5) 

is equivalent t o  a potential  barrier with maximum at  r = ro. If the  enerm 

of the  electrons exceeds the maxiTmrm of the bar r ie r  almost al l  the  incident 

electrons w i l l  reach the capture sphere. If the electron energy is less, the 

number of the electrons reaching the capture sphere will be determined by the 

transmission coefficient of the barrier. 

- 

The distance 

than a, 

Putting ro = 

ro is determined by the number Z, and is  always ,greater 

ga we have 

rl 

where 1 < < 1.62 

while for Z = 10,  ro = 1.18a. 

term on the r igh t  hand s ide of Eq. (=a) is negligible and from (11) w e  get 

(Natanson 1960). For example, with 2 = 1, ro = 1.62a 

Thus, for moderate values of 2 ,  the  second 

- 

2 
zc 3 2 2  n = r g a C N  e*[-- 
RakT 

e e e  

The total  rate of capture by all dust particles is ne.N(a).da = 1 0  

(12) 

2 03 

ZE Ida. De = w 2 C e  1 N(a) . a 2 exp C - - 
RaKl' 
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It is shown i n  equation (16.a) tha t  Z/sa is  independent of a. Hence, 

. a2 . da (13) 

The expression for the  capture of negative ions can be derived i n  an analogous 

manner and we have 

2 
2 ZE - 

n = ng N-Ci . exp C- 3 
!3 

(14) 

2 2 z s  D' = ng2Ci lQ)  N(a) a exp [- 1 da. 

and because of equation (16a) , 

2 2 
D- = IT? 2 Ci exp [- z& 1 1 -  N(a)a da (14a) 

4.4 Now, the  nmber of positive ions captured by a dust par t ic le  increases 

w i t h  the  number Z, while the number of electrons and negative ions captured 

decreases as 2 increases. 

tha t  the number of posit ive ions captured is the same as the  number of 

electrons and negative ions captured by each dust. 

12  and 14 for the captwe rates, 

I n  the stationary state, therefore, Z must be such 

Using the expressions 8a, 

which gives Z/ga = T kT 10% cg 2 7 ~ J C T  (c C e  + A >  - Ne 1 
E ZE 1 N+ 

(16) 
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Equation (16) w a s  solved nmerically (Fig. 6) and a close approxiration (within 

10%) for the  lower ionosphere ( A  << 250) could be f i t t ed  as, 

z 4 3 Ne - = 9.2 x 10 log, C5 x 10 g- J 
ga N+ 

which is  independent of the  dust radius. For rl and y then we have, 

(16a) 

De + AD- 

*e 
However, the second term in equation (51, i.e. 

contains the radius and the number density of dust explicit ly.  Noting t h a t  

D- i s  235 D e , t h i s  additive term is very nearly equal t o  

Expression (17) is not amenable for examining the  value of rl and y in the 

l imiting case of the dust concentration goins t o  zero, 

expl ic i t ly  upon the nunber density of dust, nor does it even depend upon the 

radius a, because Z/a is almost independent of a. (S t r ic t ly ,  however, g has 

a s l i e h t  dependence on Z and a, separately (see sections 4 . 3  and 4.6);  and A 

i n  equation (16) (which controls equation (17)) must have a deEree of 

dependence on the number density of dust. 

It does not depend 

Such dependences, nevertheless, 

Q kT 5 did not affect the s t a b i l i t y  of equation (171, because Z/ga 'L -T = 1.5 x 10 ,) 
E 

15 



Hence, w e  consider the requirement that  the rate of capture of electrons 

and negative ions by a l l  the dust equals the rate of capture of the positive 

ions, i.e., eq. 3. 

+ +  DeNe + D-N- = D N 

Hence, 

hrt h 
rl + yh = jq- = n ( l +  1 = 

e 

- N(a) Z.da 
= l + h + L  (because of charge neutral i ty)  

Ne 

Then, for h << 250, 

rl -+ 1 + A ,  and yh -+ 0, as the dust population tends t o  zero. 
+ Further, De, D and D- also tend t o  zero; hence, aeff = (ad t h a i ) ( l  + A ) .  

4.5 The concentration of the  dust part ic les  has been the subject of several 

recent investigations, by means of twilight and rocket observations. 

t w i l i g h t  observations, Divari (1964) has shown t h a t  the height and s ize  dis- 

t r ibut ion of the dust par t ic les  in the  lower ionosphere may be expressed as 

F r o m  

N(a).da = F.a-3.da (a > 5 x cm) 

= 8000F (a c 5 x cm) 

7 where F 5 1.3 x 10- 

(19) 

Divari also points out that for the 80 km l e v e l  his resu l t  is consistent with 

the rocket observations of Mikhv  (1962),  but is about two orders of 

magnitude l a r g e r  than the values inferred by Volz and Goody (1962) f r o m  

16 



twilight observations. Recent rocket observations at 80 km over Sweden by 

Hemenway e t  al. (1964) have indicated a size distribution somewhat steeper 

than Divari's distribution fo r  dust mdius > 5 x 

t h e i r  distribution by the expression 

cm. We approximate 

% 0, elsewhere. 

By combining this size distribution (eq. 20) and the electron attachment rate 

De, it is readily seen tha t  the effectiveness of the dust is almost wholly 

res t r ic ted  to the par t ic les  i n  the  limited radius range of 5 x 

5 x lo-' cm. 

equation (18) may be a reasonably valid one, the absolute concentration at 

any particular a l t i tude,  say 80 Ian, does not appear t o  be firmly established. 

Hemenway et  al.'s rocket data indicates tha t  the concentration at 80 lan is 

variable in  the range of 

to  

While the height dependence of dust concentration shown i n  

t o  1 (c~n-~). 

4.6 To calculate the aeff through equation (51, one then needs t o  obtain 

the  values of A, n and De a t  any alt i tude corresponding t o  a given value of 

Ne 

the several m l e c u k n  processes contributing t o  A .  

has given X(h) f o r  the sunl i t  ionosphere, as w e l l  as X(Ne,h) for the dark 

ionosphere, 

mutual neutralization prccess, A is not dependent upon Ne during sunlit 

condition. 

A(h) has been derived i n  a nmber of review papers which a l so  discuss 

Webber (19621, for example, 

Because of the l z g e  rate of photodetachment compared with the 

To claculate 0 and De, f r o m  equations (17) and (131, w e  note that . .& 
" w e  need the values of Z/ga which is dependent upon - . Using the nunerically 

Xl N e  
lye - from equation (161, we write solved graph (Fig. 6) of Z/ga vs. 
N+ 

- 
17 



N+ 
z'ga = G(K) 

'e 

because Z/ga is independent of a. With ac 

the intefiralmay be readily shcwn to be 

N+ - = 1 + X +  
"e N e  

3.1 x l o l o  k(h) g 

Taking the t o t a l  dust population (a > 4 x 

80 7.2 K(h) = 2 x . 

= 4 x 10 -6 cm(see, equation (20) 

as ~ c r n - ~ )  at  80 km, 

(21) 

A s  shown by Natanson (19601, g always lies in the range 1.0 t o  1.62 for values 

of Z ranging f r o m  in f in i ty  to  unity. It does not enter sensit ively in the 

expressions, and a check indicated that g = 1 . 2  is a satisfactory approxi- 

mation for a l l  heights. Using, then, 

Webber's value of A ,  it is a s h p l e  matter of using the G(N /Ne) graph (i.e,, 

Z/ga 

(211, and hence, the values of rl and De to  be used i n  equation (51, 

show the  values of q and De for the three heights of 90, 70 and 50 lun, for 

18 

For Ne w e  use the prof i le  i n  Figure 2. 
+ 

+ N /Ne graph) and obtaining the value of Z/ga which satisfied equation 

Table 1 



different values of Ne a t  these alt i tudes.  

for the sunlit conditions, along with the observationally derived a 

computed a 

errors of + 50% i n  the latter) when ad was assumed as 2.8 x low7 and ai = 

F i g r e  4 shws the aeff so derived, 

The eff 
is i n  agreement with the observed ueff (within the estimated ef f 

- 
1,8 10'~. 

5. Discussion of Results 

5.1 We shal l  now examine whether the agreement, within limits of errors ,  

between the  observed coefficients and those calculated by taking coppizance 

of the  dust population could be fortuitous. 

I n  a review of the then available l i t e r a tu re  on ionospheric recombination 

coefficients, Nicolet and Aikin (1959) have discussed the limitations to  the  

concept of "effective recombination coefficient" . 
in general, the  efficiency of an ionizing agency varies f m  one atmospheric 

cmst i tuent  to  another, 

only one particular constituent. 

recombination of the  molecular ions depends on t he  species. 

circumstances, the overall  effective recombination coefficient is not merely 

a function of the al t i tude;  at any a l t i tude  it should also depend on the 

detailed nature and f lux  of the  ionizing agency. 

They have pointed out t h a t  , 

Sane radiations such as the Lyman-Alpha can ionize 

Furthermore the rate coefficient of 

Under these 

In  the more recent years, however, it has become evident that the 

individual dissociative recombination rates of the dominant molecular ions 

are approximately equal to  one another. That is 

+ O2 + e -+ 0 + 0 [1,7 + - 1.01 x lom7 
c3.8 + - 1.01 x 
c2.8 + 0.51 x 

c5.9 + - 1.01 x 

(Biondi, 1964) 

(Kasner e t  a l ,  19611 

( Biondi , 1964 1 

(Kasner e t  al, 1961) 

+ N2 + e -f N + N - 

+ 
NO t e -+ N + o C ~ S  x (Gunton and Shaw, 1963; 

see Biondi, 1964) 
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Further, in the case of the ionizing agencies such as the high energy protons, 

electrons and the Bremstrahlung X-rays, the ionization efficiency for each of 

the constituents N2, 02, and NO is the same (Within a f e w  percent). 

even i n  the extreme case of a stratwn which is undergoing ionization solely by 

auroral (or,  for that matter, by solar) Lyman-Alpha the  result ing aeff f o r  

t ha t  stratum can differ from the value obtained when it was ionized by 

electrons, X-rays o r  protons by a factor 2 2.0. 

Thus, 

A difficulty i n  the application of the observation-derived aeff values 

(Figure 4) is tha t  they w e r e  obtained under conditions of the values of Ne 

shown in  F i , v  2. 

derived coefficient w i l l  not be of d i rec t  use in calculating the steady state 

electron density at any al t i tude,  We note, however, that the close agreement 

within the limits of e m r  between the  theoretically-derived expression 

(eq. 5 )  which includes the role of dust papulation and the observationally 

derived aeff implies that the equation is a correct one and that it could be 

used direct ly  for the purpose of calculating the steady state ionization at  

any alt i tude.  

valid (at 10% accuracy) even when the electron density, at any particular 

a l t i tude ,  was different fram that  i n  Figure 2 by an order of magnitude. 

other  words, the Ne dependence of the coefficient is not severe. 

S t r ic t ly ,  then, given the primary ionized spectrum, the 

Calculatims indicate that  the coefficients i n  Figure 4 are 

In 

5.2 The steady state electron density may be calculated by mans of the 

equation (5) as follows: 

r )  '1 

Given, then, ad, A, ai and q, at any al t i tude,  the  result ing value of equili- 

brium electron density is simply the value which when used to derive n and 

De [see Section 4.61 would satisfy equation (22). 
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It is readily shown that the X(h) during the  d a y t k  is not affected by 

considering the  dust population . For, 

t = PN; + a .N N- (in the absence of dust) ANeo 1 0 0  

ANe = PNI + aiNtNw i D-N- (with the  dust) ,  

where A is the attachment coefficient and P is the photodetachment coefficient. 

For No’ Nt $ l o6 ,  (aiN t D-1 is severe1 orders of mgnitude smaller than 

P(= 0.44). Hence, 

+ t 

N- o -  N -  - - - = A .  

Considering, now, the dependence on dust population of the nighttime h 

values for a part icular  value of Ne at any stratum 

t 
hT+ (because D- is several orders of aiN + D- - -  A, - - -  

t t 
*iNo N: mgnitude smller than aiN h 

Ne t N- + Cd N+ 3 , where Cd is the total nusnbw of charges/cm on all But 7 = 
NO N e  + N i  

t h e  dust particles.  

Hence 9 

1 t ho x 
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. 

where, .- 
= )N(a )Z  da = g(5(80)7*2 6.2 x (See Sections 4.5 and 

‘d ga l-7 
4.6.) 

Z 
ga 
5 5 

We note from Figure 8, t ha t  (4 ranges, under the possible conditions i n  the 

lower ionosphere, from 2 x 10 t o  6 x 10  . Hence, f o r  Ne 100, 

Hence, w e  conclude tha t  the  presence of dust does not alter seriously the 

nighttime values of A, appropriate t o  a given value of Ne. 

These resu l t s  may also be surmised from simple physical considerations. 

Because of the negligibly smaller rate of negative ion attachment t o  dust 

compared with the rate of electron attachment t o  dust, every second as many 

electrons are lost t o  dust as are the  posit ive ions, 

of dust can be considered as merely a loss of ionization rate, w i t h  no e f fec t  

Hence, the existence 

on the value of A ,  day or night. 

5.3 The several molecular processes t h a t  enter  i n  the calculation of 

X (= N-/Ne) , such as the attachment of electrons t o  molecules, photodetachment, 

as w e l l  as the dissociative, and ion-ion recombination coefficients have been 

the  subject of considerable interest  in the recent past. 

these processes are given by Biondi (19641, F i t e  (1964) and Branscomb (1964). 

Excellent reviews of 
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These processes have also been examined from the ionospheric standpoint by 

Whitten and Poppoff (1964) and Reid (1963). The uncertainties that exist i n  

our calculations of aeff (for example, the dust concentration estimates that 

we have adopted), are such t h a t  it is entirely premature to  interpret  the 

close agreement with the observed values of aeff to  the correctness of the  

X mdels used or the values of ad and ai. \*'e may only in fe r  t ha t  the 

aweement may be sugqestive of t h e i r  approximate val idi ty ,  and t h a t  it is 

unlikely t o  be fortuitous. The choice of ad = 5.9 x lo-.' would lead t o  a 

closer agreement at 

coefficient at  5 80 )an does not permit a valid inference of this. 

70 )an level, but the uncertainty in the observed 

Laboratory measured coefficients are w e l l  known to  be uncertain in as 

much as the coefficients emerged as a resu l t  of a quite complex set of 

reactions. 

with the ionization of the lower ionosphere are again only imperfectly under- 

stood. 

any a l t i tude  is one of the more significant parameters i n  the region. 

repeated and more accurate estimates of the concentration by rocket-borne 

instruments the problem of effective recombination coefficient is expected t o  

reach a proqressively m o r e  reliable state. 

dust several orders of magnitude smaller than of the molecular negative ions 

and electrons, mobility experiments using Gerdian condensers may be a feasible  

approach t o  the investigation of the  dust concentration. 

Furthermore, the molecular compositim as w e l l  as t h e i r  var iab i l i ty  

Our calculations, however, indicate t h a t  the dust concentration at 

Wth 

With the  chargelmass r a t i o  of the 
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TABLE 1. 

h = 50 km I h = 90 km h = 70 km 

+ b  
(Any e n t r y  agb i n  t h e  columns 2 - 10, should be r e a d  as a x 10- ) 

Values of Z/ga, 
t h e  cho ice  of e l e c t r o n  dens i ty  Ne(CM'3) r ang ing  from lo1 t o  105. 
Three cho ices  of dus t  c o n c e n t r a t i o n  Nd a t  t h e  80 km (Nd(80)) were 
cons ide red ,  namely, 0.1, 1.0 and 10 (CM'3), i n  con junc t ion  w i t h  t h e  
h e i g h t  dependence of h - 7 * 2  (see ,  S e c t i o n  4.5). 
t h e  columns 2-10 should be read as a x la- . 

and D e  a t  t h e  a l t i t u d e s  of 90, 70  and 50 km w i t h  

Any e n t r y  a& i n  
+ b  
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Figure CaDtions 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Reduced, l i ne  integral  of absorption versus 

frequency. 

Electron density (Ne) and ionization rate (q) 

prof i les  during the absorption events shown in 

F i V  1. 

Ionization ra te  f o r  the different  a l t i tudes  versus 

the  low e n e r q  cut-off (Ec) when the  primary 

spectrum could be specified by M>E) - - E-1.5 

<mo2 sec’l). 

the insert figure. 

The primary spectrum is shown i n  

The effective recombination coefficient versus 

a l t i tude :  The solid dot a t  any a l t i tude  is the 

mean a eff 
F i v e  2. The continuous l ine and dotted l ines  

were calculated by means of equation (5 )  corre- 

spondbq t o  the choices of 80 ~JII dust concentration 

equals 0.1 (c~rt-~) and 1.0 (a-3) respectively. 

an inser t  is shown the  X(h) used i n  the calculations, 

after Webber (1962). 

dwing the 3 instances of absorption i n  

As 

Schematic representation of the interact ian potential  

between the negatively charged dust and an electron 

or negative ion.. 

N+ 
6 Numerically solved relat ion between Z/ga and 

obtained from equation (16). 
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F i g .  1. Reduced, l i n e  i n t e g r a l  of a b s o r p t i o n  v e r s u s  f requency.  
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Fig .  3 .  I o n i z a t i o n  r a t e  f o r  t h e  d i f f e r e n t  a l t i t u d e s  v e r s u s  t h e  low energy  
c u t - o f f  (E,) when the  primary spectrum cou ld  be s p e c i f i e d  by 
N ( > E )  = E - I o 5  (cm'* sec''). The pr imary spectrum i s  shown i n  t h e  
i n s e r t  f i g u r e .  
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F i g .  5. Schematic r e p r e s e n t a t i o n  of t h e  i n t e r a c t i o n  p o t e n t i a l  between 
t h e  n e g a t i v e l y  charged dust and an e l e c t r o n  o r  n e g a t i v e  ion. 



o b t a i n e d  F ig .  6 .  Numerical ly  so lved  r e l a t i o n  between Z/ga and - N +  
equa t ion  (16).  N e  
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